How much oil is used to make PET plastic water bottles?


Plastic bottles do not sink in water and does not biodegrade easily, and have become the most visible and therefore an easy target of environmental activism. It is obviously a great idea to do everything we can to protect our environment and resources. We strongly believe in that. Political policies and popularized media reports and well-meaning blogs let alone TV commercials, however, are not always based on truths and facts. Contrary to popular belief, the entire bottled water industry consumes a fraction of world’s oil production. Moreover, the plastics that is petroleum derived is made from waste refinery streams using the following feedstock:

  • Naphtha, an intermediate hydrocarbon liquid stream derived from the refining of crude oil, which can’t be used in internal combustion engines, 70% of which is used for plastics
  • Propene, also known as propylene or methylethylene, is a byproduct of oil refining and natural gas processing by fluid catalytic cracking, which can’t be sold in propane tanks
  • Benzene, a natural constituent of crude oil, which is removed from the gasoline supply to meet mobile source air toxics (MSAT) regulations

Statistically, less than 4% equivalent of world’s aggregate oil is used in making all plastics. Less than 35% of the plastics is used to make packaging. Of this, 1.2% of plastic packaging is used to make PET plastic drinks bottles. Bottled water constitutes less than 30% of PET plastic drink packaging segment. In summary, entire PET plastic bottled water industry in the world requires less than 0.04×0.35×0.012×0.3=0.0000504 (or 0.00504%) of world’s oil.

Furthermore, only a minority portion (around 13%) of the plastics produced in the USA is petroleum derived, while the rest is made from waste byproducts of natural gas processing. PET is polyethylene terephthalate, the most common type of polyester, made from ethylene (via ethylene glycol) and purified terephthalic acid. Ethylene is produced in the petrochemical industry by steam cracking in which saturated hydrocarbons from the feedstock such as naphtha are broken down into smaller hydrocarbons. Terephthalic acid is produced from an aromatic hydrocarbon feedstock such as benzene. 75% of plastic is made from ethylene, 20% from propylene (8% petroleum-derived), and 5% from petroleum-derived aromatics. These are derived from centralized plants that process ethane (2-carbon chain, natural gas waste byproduct, over 70% of primary plastic source material), propane (3-carbon chain), and naphtha (5, 6-carbon chain), and from refinery derived propylene. Ethylene is 85% made from natural gas liquids, primarily ethane.

Bottom line: PET plastic water bottle is one of the most effective and inert carbon capture & sequestration methods from refinery streams and natural gas processing byproducts, with one of the lowest lifecycle energy cost and environmental footprint among the major product packaging materials, and as such they should be properly disposed of (i.e., stored at landfills), recycled, or reused. PET plastic water bottles require a tiny fraction of world’s oil, and most of that is made from waste refinery byproducts.  We strongly support and promote recycling and upcycling as well as fact based utilization of natural resources and technologies.

Alkalinity vs. High pH


Alkalinity and alkaline (= pH above 7) are not the same. Alkalinity is a measure of the buffering capacity of water – its ability to resist changes in pH. The pH is an indication for the acidity of a substance. It is determined by the number of free hydrogen ions (H+) in a substance. Alkalinity and pH are related to each other as two different measurable parameters of water. In mineralized water, alkalinity rises sharply as pH is raised.

However, alkalinity does not depend strictly on pH. For example, ionized water may have high pH (= alkaline) but has little ability to neutralize acid in the stomach to initiate the production of bicarbonate in the bloodstream. Alkaline ionizer promoters equate acid-neutralizing ability with high pH, but ionized water does not deliver sufficient alkalinity to make a biological difference. On the other hand, Lemon juice is around pH 2 (acidic) but its nutritional matrix provides high alkalinity in body.

Alkalinity is the true measure of acid-neutralizing capacity which includes the bicarbonate (HCO3^-1), carbonate (CO3^-2) and hydroxide (OH^-1) ions. It is measured in mg/l or ppm as CaCO3 (of the amount of acid – e.g., sulfuric acid – needed to bring the water sample to a pH of 4.2).

Aren’t plastic bottles bad for the environment? Why not switch to glass or bio-degradable bottles?


We are committed to delivering the benefits of this “perfect water” to the world while minimizing negative impacts to the environment. We examine various industry data and information to create operational blueprints.

Our goals include: 1) reduction in life-cycle energy consumption; 2) reduction in use of non-renewable resources; 3) reduction of non-recyclable waste material; 4) reduction of environmental pollutants; and 5) promotion of sustainable recycling/reuse.

A comprehensive study of packaging life-cycles from resource mining/harvesting to generation of methane, energy/water consumption, transportation impact, recycling and land-fill issues yields logical choices. Currently, in this context, PET plastic bottles still remain one of the better practical options for bottled water containers.

In fact, PET plastic water bottle is one of the most effective and inert carbon capture/sequestration devices with one of the lowest life-cycle energy cost and actual environmental footprint among the major consumer product packaging materials, and as such they should be properly disposed of (i.e., stored at landfills), recycled, or reused. PET plastic water bottles require a tiny fraction of world’s oil, and most of that is made from waste refinery byproducts.

We do plan to offer glass lines in addition to current PET lines to cater to customer’s needs. We may also consider changing the bottle types to a bio-degradable material when certain key issues such as shelf life, impact on recycling utilities and environment (including generation of carbon dioxide and methane) are mitigated.

There are additional FACTS as opposed to popular myths to consider (more on this subject will be posted here later).

Review of Popular Urban Legends Regarding PET Plastic Bottles


Here is a quick review of popular myths vs. facts regarding PET plastic bottles.

  • Bisphenol A (BPA): PET (Polyethylene terephthalate) plastic bottles do not contain Bisphenol A (BPA) despite the misinformation abundant in media. BPA is used in the manufacture of some plastics such as food and drink can linings, but it is not used in PET plastic food and drink containers (nor those made from HDPE, LDPE or polypropylene). BPA is a component used to make epoxy resins and polycarbonate plastic, which was often used for refillable water bottles sold at retail stores or baby milk bottles, most of which have now switched to BPA-free types by now. At any rate, PET plastics have nothing to do with BPA.
  • Phthalates: Phthalates (primarily DEHP) are substances used in the manufacture of PVC plastics to make them flexible – they are not used in the manufacture of PET plastic bottles. The term “phthalates,” short for “orthophthalates,” refers to a class of additives, which are used in some plastic products, specifically products made with a particular type of plastic – polyvinyl chloride (also known as PVC or vinyl) – to make the material soft and flexible. Vinyl shower curtains, cable and wire, and flooring are examples of flexible PVC products that can contain phthalates.
  • Carcinogens DEHA: This widely circulated claim stems from a student’s thesis that was promoted in the media without peer review. The thesis incorrectly identifies di(2-ethylhexyl) adipate (DEHA), a plastics additive, as a human carcinogen. DEHA is neither regulated nor classified as a human carcinogen by the U.S. Further, DEHA is not inherent in PET as a raw material, byproduct or decomposition product. DEHA is a common plasticizer that is used in innumerable plastic items.
  • Dioxins: Dioxins are a family of chemical compounds that are produced by combustion at extremely high temperatures. There simply is no scientific basis to support the claim that PET bottles can release dioxin. They can only be formed at temperatures well above 700 degrees Fahrenheit; they cannot be formed at room temperature or in freezing temperatures. Moreover, there is no scientific basis for dioxins to be present in plastic food or beverage containers in the first place.
  • Aceltaldehyde: Acetaldehyde is an organic chemical compound, occurring naturally in coffee, bread, and ripe fruit, and is produced by plants as part of metabolism. It is also produced by oxidation of ethanol and is believed to be a cause of hangovers from alcohol consumption. Acetaldehyde is ubiquitous in the ambient environment.  It is also formed as a product of incomplete wood combustion in fireplaces and woodstoves, coffee roasting, burning of tobacco, vehicle exhaust fumes, and coal refining and waste processing. In addition, Acetaldehyde is formed in the body from the breakdown of ethanol. Potential Aceltaldehyde exposure through bottled water, if any, is inconsequential.

What is the shelf life of bottled water?


Bottled water is considered to have an indefinite safety shelf life if it is produced in accordance with CGMP and quality standard regulations and is stored in an unopened, properly sealed container. Therefore, FDA does not require an expiration date for bottled water. However, long-term storage of bottled water may result in aesthetic defects. Bottlers may voluntarily put expiration dates on their labels. 

So why does bottled water have an expiration date? A 1987 New Jersey law required all foods sold in New Jersey to show an expiration date of two years or less. Because it would be inefficient to make separately labeled batches of product just for New Jersey, most bottled water producers began stamping their products with a two-year expiration date. A bill repealing the requirement was signed into law in early 2006, but many large retailers require expiration dates for bottled water.

How does AKALI® compare to other sports drinks such as Gatorade or Powerade?


Gatorade and Powerade are products that contain carbohydrates, electrolytes, proteins, and/or vitamins depending on the particular product line.  These products are designed to provide energy in the form of disposable calories, replenishes electrolytes expended during workout, rehydrates, and promotes muscle recovery. 

AKALI is mineral-rich glacier water with high alkalinity designed to buffer the body’s natural acid/base balance, which increases endurance allowing athletes to perform for a longer period of time and more efficiently rehydrate the body following workouts. 

All of these products have different formulations and are designed to perform different functions.  Therefore, comparing one product to another would be like comparing apples to oranges.  Consumers should choose products based on which would suit them better in their workout regime, nutritional needs or lifestyles.